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Abstract. We consider the inverse problem of determining a Rieman­
nian metric in R n which is euclidean outside a ball from scattering infor­
mation. This is a basic inverse scattering problem in anisotropic media. 
By looking at the wave front set of the scattering operator we are led to 
consider the "classical" problem of determining a Riemannian metric by 
measuring the travel times of geodesics passing through the domain. We 
survey some recent developments on this problem. 

1 The inverse scattering problem 

Anisotropic materials include most crystals. A common case of aniso-tropy rel­
evant to some Earth structures is transverse isotropy. The inverse scattering 
problem for this type of media is not very well understood at present. There are 
many mathematical difficulties associated with the inverse scattering problem 
for anisotropic Maxwell's equations or the system of elasticity for anisotropic 
materials. A more basic example of anisotropic media, which involves the study 
of a scalar partial differential equation, is the case of anisotropic conductors. In 
this case the electrical conductivity of the medium is represented by a positive 
definite, symmetric matrix. It is more convenient to look at the conductivity 
in geometric terms, thus we are going to think of it as a Riemannian metric. 
Notice that this equivalence between Riemannian metrics and conductivities is 
valid only in dimension n 2: 3 [L-U]. 

Let g(x) = (gij(X)) be a positive definite, symmetric matrix on Rn,n 2: 2. 
We assume that the Riemannian metric 9 is smooth (many of the results in this 
paper are valid assuming finite smoothness). We also assume that the metric is 
euclidean outside a ball B of radius R centered at the origin, that is gij = Oij for 
Ixl > R where Oij denotes the Kronecker delta. The euclidean metric is denoted 
by e = (Oij). We assume throughout this paper that there are no trapped rays 
in B, that is any geodesic: for the metric: 9 starting at a point in T3 kavps B in 
fini tc timc. 

We denote by .:19 the Laplace-Beltrami operator associated to the metric g, 

i.e. in local coordinates 

1 ~ 8 1··8 
..19 = (dct g) - 2" ~ -8 . (det g)2 g'l -8 . 

.. x" X J 2.)=1 

(1.1) 
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where (gij) = (gij)-l, detg = det(gij). Given A E R-O,w E sn-l, the outgoing 
eigenfunctions, 'lj;g (A, x, w) are solutions of 

(1.2) 

which have the asymptotic behavior 

( \ B ) iAlxl 
nl. _ iAx·w ag /\, ,we 0(1 I_n;-l_l) 
'l-'g - e + n-l + X 

Ixl-2 

(1.3) 

where B = I~I' The function ag(A,B,w) is called the scattering amplitude. It 
measures, roughly speaking, the amplitude of the radial scattered wave which 
resulted from the interaction of the incident plane waves eiAX 'W with the pertur­
bation of the euclidean metric given by g. 

The inverse scattering problem is whether one can determine the metric g 
from ago i.e. to study the non-linear map sending g to ago It is easy to see that 
it is not possible to determine the metric uniquely from this information. Let 'lj; 
be a smooth diffeomorphism of Rn which is the identity outside B. We define 
Vg = 'lj;g 0 'lj;-l. A straightforward calculation shows that Vg satisfies 

(1.4) 

where 'lj;* g denotes the pull back of the metric g under the diffeomorphism 'lj; 
that is 

Since the asymptotic behavior of Vg and the 'lj;g at infinity is the same we conclude 
that 

(1.5) 

The natural conjecture is that (1.5) is the only obstruction to uniqueness. This 
conjecture was proven recently. It is a consequence of the paper [B-K] which 
uses the boundary control method (BC) pioneered by Belishev (see [B] for a 
survey). In turn this method depends on a Holmgren type uniqueness theorem 
for hyperbolic equations which was proven by Tataru [T]. See also [R-Z]. 

The BC method has been greatly extended to solve the inverse scattering 
problem for. any first order and zeroth order selfadjoint perturbation of the 
Laplace-Beltrami operator [K]. There are also recent results for the case of non­
selfadjoint perturbations [K-L]. 

We remark that if two metrics gl, g2 are conformal to each other (i. e. gl = 
a(x)g2 with a a non-zero function) and 'lj; * gl = g2 with 'lj; a diffeomorphism of 
R n which is the identity outside B then 'lj; must be the identity and therefore 
gl = g2· 

The above mentioned results assume that we know the scattering amplitude 
for all frequencies and directions. Of course, this is too much information and we 
would like to measure the scattering amplitude for a more restricted set of angles 
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and frequencies. An interesting physical problem is the inverse backscattering 
problem i.e. we measure ag (A, B, -B) for all A E R - 0 and all B E sn-l. The 
information given depends on n variables. The only known result about this 
problem is the following: if two metrics are conformal to each other and they arc 
a priori close to the euclidean metric, then the two metrics af(~ the same if their 
backscattering amplitudes are the same. This is not exactly the result stated in 
[S-G2] but the methods used there give this result. 

Another inverse scattering problem which involves less data is the fix energy 
problem. In this case WE' measure the scattering amplitude at a fixed frequencv 
AD for all angles (), w E 5,,-1. The scattering amplitude ag (AD, (), w) depends 
on 271 - 2 variables. It is well known (see for instance [G]) that knowledge of 
ag (AD, (), w) determines the set of Cauchy data for the Laplace-Beltrami operator 
on B. Namely we can recover from ag (Ao, B, w) 

ou . 2 . 
Cg,AQ = {(UI8B, 0)80), WIth 11 E H (B) solutIOn of (1.2) on B.} (1.6) 

Notice that if Ao is not a Dirichlet eigenvalue for the Laplace-Beltrami operator 
then the set of Cauchy data is the graph of the Dirichlet to Neumann map fly,AIJ' 

In the class of metrics conformal to the euclidean metric, it was proven in [Sy­
Ul] in dimension n 2" 3 that Cg,Ao uniquely determines the metric y. In [L-U] it 
is shown in dimension n 2" 3 that Cg,AQ uniquely determines y for real-analytic 
metrics. The smooth case remains open. The linearization of this problelll is 
studied in [Sy-U2]. 

In the two dimensional case the anisotropic problem is in some sense easier 
since we can reduce it to the isotropic case by using isothermal coordinates [A]. 
In fact in this case the Laplace-Beltrami operator can be transformed, after a 
change of coordinates, to a conformal multiple of the standard Laplacian. Thus 
we can transform (1.2) into 

with c positive and equal to 1 outside B. In this case it is not known at present 
for general smooth c whether we can recover c from the scattering amplitude at 
a non-zero fixed energy. It is known under the a priori assumption that c is small 
enough [Sy-U3] or for a generic set of c' 8 [Su-Ul ,2]. The anisotropic conductivity 
equatiorL, which is the analog of (1.2), is given by 

with r = hi)) a positive definite, symmetric smooth matrix which is the identity 
outside B. As before the inverse scattering problem at a fixed energy can he 
reduced to the question of whether the set of Cauchy data C"Ao determines 
uniquely up to conjugation by a group of difFeomorphism which is the idelltity 
on the boundary of B. A modification of the method of [A] allows us to [(~dll("(, 
the problem to the case of an isotropic conductivity [S]. If Ao = () t.he isotropic 
problem was solved in [N] (St~e also [B-U] for another approach that allows fm 
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less regular conductivities). For the case Ao f- 0 uniqueness it is not known 
at present. Uniqueness has been proven for small enough conductivities or for 
generic conductivities [Su-Ul ,2]. 

In this paper we consider other information obtained from the scattering am­
plitude which involves less variables than the full scattering amplitude. Namely 
we will consider the singularities of the scattering operator whose kernel is, essen­
tially, the distribution obtained by taking the Fourier transform of the scattering 
amplitude in the frequency variable. This leads to the problem of determining 
a metric from the scattering relation, which as we explain in the next section, 
can be considered as the "classical" analog of the inverse scattering problem. 
Knowledge of the scattering relation means that if we know the point of entry 
of the geodesic into B and its direction, we can determine the point of exit 
of the geodesic from B and the direction of exit. As we also show in section 
2 the scattering relation determines, under some additional assumptions, the 
geodesic distance dg (x, y), x, yEa B between points in the boundary of the ball. 
This function measures, roughly speaking, the travel time of geodesics passing 
through B. The inverse kinematic problem arising in seismology is to determine 
the metric 9 from these travel times. We discuss in section 3 this problem in 
detail. We make emphasis on a new identity which was derived in [S-U2] and 
played a fundamental role in proving that we can uniquely determine a metric 
sufficiently close to the euclidean metric (up to isometries) from its travel times. 
This is formula (3.19). We list in section 4 some open problems. 

2 The scattering relation 

To define the scattering operator and study its singularities we use the Lax­
Phillips of scattering which uses the wave equation to define the scattering op­
erator. It is quite natural in this context to use the wave equation since it is well 
understood how singularities propagate for solutions of this equation. For more 
details see [G]. 

Let (uo, ud E COO (R n) X COO (Rn). We define the group of operators 

au(t) 
Ug(t)(uo, ud = (u(t), ---at(t)) 

where u solves the wave equation 

(2.1) 

(2.2) 

We denote by Ue(t) the operator corresponding to the euclidean metric. The U~s 
are unitary groups associated to the energy space 7-l g defined as the completion 
of COO (Rn) x COO (R n) under the norm defined by 

'J J 'J ~ ,·au au ~ II(uo, udll~ = (Iuol~ + .~ g'l OXi OXj V detg) dx. 
',1=1 

(2.3) 
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We denote by He the energy space corresponding to the euclidean metric. 
The Wave Operators are unitary operators from Hg to He which are defined 

by 

(2.4) 

The scattering operator, which is a unitary operator from He to itself, is defined 
by 

(2.5) 

It follows from finite speed of propagation of solutions of the wave equation that 
to compute W ± acting on compactly supported data we don't need to take the 
limit in (2.4). Namely for k E Hg compactly supported, W±k = Ue ( -t) 0 Ug(t)k 
for ±t sufficiently large. 

We now explain the connection between the scattering amplitude as defined 
in (1.3) and the scattering operator. In the context of the Lax-Phillips theory 
of scattering this is seen using a modification of the Radon transform to reduce 
the problem to a one dimensional problem depending on some parameters. 

Let 

be the Radon transform 

Rf(s,O) = 1.e=s f(x)da(x) (2.6) 

where da is normalized Lebesgue measure on the hyperplane {x . 0 = s}. Acting 
in the x-variable, R is defined on those elements of D'(Rn x R x sn-l) having 
compact support in x for each t, w. 

It is well-known that the Radon transform intertwines the n-dimensional 
Laplacian with the one-dimensional Laplacian, i.e., 

(2.7) 

The modified Lax-Phillips Radon transform [L-P] which maps C 2 _ to C- valued 
distributions, is defined by 

n-l 

RLP(uo,ud = CnD;Z(DsRuo - Rud, n odd. (2.8) 

!!..=...! n-l 
For n even, in (2.8) one replaces Ds 2 by IDs l-2-. RLP is a unitary isomorphism 
from the free energy space He to L2(R X sn-l). Furthermore the modified Radon 
transform has the key property that it intertwines the free group associated to 
solutions of the wave equation with the translation group on R x sn-l. Namely 
we have 

(2.9) 



240 

where Tt denotes the translation group to the right: 

Td(s) = j(s - t),j E E'(R x 5 n - 1 ). 

The scattering operator in "Radon transform land" is defined by 

(2.10) 

Sg is a unitary operator from L2(R x 5,,-1) to itself. It is easy to see that 
it is invariant under translation since the coefficients of the wave equation are 
independent of t. Thus, S!J is a convolution operator in the s-variable, which can 
be written as 

Sgj(s,8) = Ij(s,8) + Ln-l kg(s - s',8,w)f(w)dw (2.11) 

where I denotes the identity operator. The distribution kg (s, 8, w) is called the 
scattering kernel. We have that 

( ' 8) \,,-3 I -.isAk ( 8 )d a g A, ,w = enA JR e 'y s, ,w s (2.12) 

where Cn is a constant. 
This is a rough outline of the "quantum" picture using the wave equation 

approach. We describe now the "classical" picture in phase space by computing 
the singularities of the operators defined above. 

It is a well-known result of Hormander that singularities of solutions of the 
wave equation propagate along null-bicharacteristics. W(c consider the principal 
symbol of the wave equation 

with 

2 p(t,:r,T,O = T - hg(:r,O 

n 

hg(:1:,O = L gij~i~j 
i,j=li 

The Hamiltonian vector field associated to p (resp. hq ) is defined by 

a . n op a n op a 
Hp=2T--t- L--. -L'--' at . o~)' O.TJ· . o:1:J' ~J' 

J=1 J=! 

( ~ ohy a ~ ohy [) 
resp. Hh g = L ~~ - L -;:;;--) 

. V~J v.r) . v.r) ~I 
)=1 )=1' 

(2.13) 

(2.14) 

(2.15) 

The bicharacteristics are integral curves of the Hamiltonian vector field Hp. The 
integral curves of Hh g are tangent to the energy surface hq = 1. \Ve denote the 
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bicharacteristic flow of Hp (rcsp. Hh g ) at time t by 1?(t) (resp. f)q(t).) We remark 

that the geodesics of the metric g are the projections of the hicharacteristics 0\'('1' 

:r-spacc. In fact this is another way to define geodesics. Uq (t) is a Fourier int,(~gral 

operator whose canonical relation is given by 

C;(t) = {((:r, 0, (y, II)) E T*(RI1) - 0 x T*(R") - 0; 

(t,T,:r,O = q/(O,J'.y,II), with T = ±~(Y"I)} 

(2.1G) 

Tlw ., classical" free space is T* (R" - B) - 0 together with vector field H". 
The perturbed "classical" space" is T* (R") - 0 together with the vector field 

H"g. The natural "classical" analog of the wave operators (2.4) is given by the 

diffcomorphisms 

lJ!± = lim 8,.(-t)8,,(t): T*(R") - 0 ---7 T*(R" - D) - 0 
I~±oo . 

(2.1 7) 

and the "classical" scattering diffeomorphism is given by 

Pg = lJ!+ 0 lJ!~1 : T*(R" - B) - 0 ---7 T*(R" - B) - 0 (2.18) 

The scattering relation is the graph of P g, that is, for some t 

Rg = {((:r, 0, (Y,TI)) E (R" - D) X 5,,-1 x (R" - B) x 5"- 1; 

(:r,O = (-)g(t)(y, II)} (2.10) 

To know the scattering diffeomorphism Pg is equivalent to knowing the scattering 

relation R g . Let 17 = {:r . Wo = :co . wo} be an hyperplane supported in R" - D 
with normal Wo E 5"-- 1 and the point :1:0 E R" - B near D. 

Under the assumption of no conjugate points on the metric Y Ileal' B (no 

caustics) the solution of the Hamilton-.Tacobi equation ncar D 

(2.20) 

is giw~n by 5 (.r) = ri!J (:c. E) where d" (.1:. E) denotes the geodesic distance fmm .1" 

to the hyperplalH' 17. The Lagrangian manifold .1 obtained by the fimv-out from 

:.; by the integral ('un't's of Ih" tangent to fly = 1 is given by J = (.r.dS(.t)). 
To know til(' scattering relation is equivalent. to knowing > 1 ill T* (R" - D). 
\\'e then COIH:ludf' that to know the scattering relation is equividpllt to knowillg 
this geodesic dist anc(' for all h~'perplilll(,s support.cd outside tIl(' bid!. Since the 
metric is cuclidean outside D w(' conclude that to kllow the scattering relatioll 

is equivalent to knowing d,l(.c . .1/), \:f;r,.I/ E DD. Physicall~' thi~ ('OlTeS]lOll(ls to 
knowing the travel tillie'S of geodesics passing through B. 

3 The boundary distance function 

In the last sectiun w(' Illoti\'at(,d tIl(' problelll of deu'rlllillillg a Ri('I11<lllllian Ill<'tric 

on a bOllnd!'d dOlllaill!2 ill R" frOlll the g('od('sic disLlllC(' fllllctioll d,/(.r . .1/) . . r . .I/ E 
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an. This function is also called the hodograph or the boundary distance function. 
This problem arose in geophysics for the case in which the metric is conformal 
to the euclidean metric, i.e. gij = -b8ij' In the literature this problem is referred 
to as the inverse kinematic problem. The function c models the sound speed of 
the medium. This problem has also attracted the interest of geometers because 
ofrigidity questions in Riemannian geometry (see for instance [CI,2], [Gr], [MIl, 
[0]). The problem can be formulated for general Riemannian manifolds with 
boundary. 

We now state the problem more precisely. Let n be a bounded open set in R n 

with smooth boundary r. We assume that n is strictly convex with respect to g, 
i.e., for any two distinct points x E n, yEn there is a unique geodesic joining 
x and y lying entirely in n with the possible exception of the endpoints x and y. 
Let dg(x, y) denote the geodesic distance between x and y. The inverse problem 
we address in this section is whether we can determine the Riemannian metric 9 
knowing dg(x,y) for any x E r, y E r. As in (1.5) it is easy to see that 9 cannot 
be determined from this information. We have dlj;* g = dg for any diffeomorphism 
'l/J : n --t n that leaves the boundary pointwise fixed, i.e., 'l/Jlr = Id, where Id 
denotes the identity map and 'l/J*g is the pull-back of the metric g. R. Michel 
conjectured in [MI] that this is the only obstruction to uniqueness, namely if 
we have two Riemannian metrics gl, g2 with n strictly convex with respect to 
both, and if 

(3.1) 

there exists a diffeomorphism 'l/J : n --t n, 'l/Jlr = Id, so that 

(3.2) 

As noted earlier in the case that the metrics gl and g2 have the same bound­
ary distance function and are in the same conformal class then the diffeomor­
phism must be the identity and therefore the conjecture in this case is that the 
metrics are the same. 

In [G-MI,2] (see also [C-S]) the case of radial metric conformal to the eu­
clidean is considered (i.e. the sound speed is assumed to be radial.) The first 
general result was proven by Mukhometov [Mu], who showed in two dimensions 
that if two metrics are conformal to the euclidean metric and the domain is 
geodesically convex for the two metrics then the metrics are the same. More­
over, he proved a stability estimate. The proof is very original and uses a form 
of an energy inequality for this problem. Energy inequalities are of standard use 
for hyperbolic equations but Mukhometov's energy inequality was, at the time, 
completely new. We also note that in two dimensions the problem is formally 
determined since the hodograph depends on two variables. Mukhometov's result 
was generalized to higher dimensions in [Mu-R] using a similar method. In [B-G] 
and [Be] it proved in all dimensions n 2': 2, again under the geodesically convex 
assumption on n, that if two metrics are conformal to each other and they have 
the same hodograph then they must be the same. Also in [B-G], [Be] stability 
estimates are proved in this case. Cr'oke [CI] gave a nice geometric proof of the 
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uniqueness part of the main result in [B-G], [Be] on Riemannian manifolds with 
boundary satisfying an additional assumption which is weaker than geodesically 
convex. As far as we know the stability estimates of [B-G] and [Be] don't follow 
from Croke's argument. 

The conjecture (3.2) has been considered in [Gr], [:vII] for general Rieman­
nian manifolds with houndary under some assumptions 011 the curvature. In 
particular they have shown that if M is a Riemannian manifold with boundary 
and Riemannian metric g, geodesically convex with respect to g, the conjecture 
is valid if !vI is any compact suhdomain of RT>, any compact suhdomain of an 
open n-dimensional hemisphere or any compact sub domain of the hyperbolic 
plane. In two dimensions in [G-N] the conjecture is proved under some restric­
tions 011 the behavior of an extension of the metric to R2 which are essentially 
a condition of negative curvature on the extension of the metric. The latter rc­
suit was generalized in [C2],[O] in two dimensions for negatively curved surfaces 
with houndary under less stringent condition that geodesically collvex and to 

n-dimensional negatively curved Riemannian manifolds with boundan- under 
additional restrictions [C 1]. 

3.1 The linearized problem 

We consider the linearization of the map 

(3.3) 

in the direction of a Co (ft)-tensor field .!ij, i, j = 1, ... , n. We consider the Hamil­
tonian vector field Hh and we denote by (;c(t) , ~(t)) the integral curves of HII 

9 - 9 

on the energy level hg = 1. We are going to use the following parameterization 
of those integral curves. Let us denote 

ST*8ft_ := {(z,w) E ST*8ft; z E 8ft, w E sn-l, g-lw' v(z) ::; O}. 

where v(z) is the outer unit normal to 8n. Let IlS introduce the measure ri/l'(z, w) = 
g-lw · v(z)dSzdw on ST*8n_, where dSz and dw are the surface measures on 
8ft and sn-l , respectively. Then (x( t), ~(t)) = (x( t; z, w), ~(t; z, w)) is defined as 
the integral curve of Hh g issued from (z,w) E ST*8ft_. 

Now we define the geodesic X-ray transform by 

. 3 

Ig(f)(z, 8) = .I, i~l jij(r(t)yYi(tyYj (t) rit, (3.4) 

where ,(t) = ,(t; z, 8) is the geodesic issued from, (z, 8) E ST8ft_ parameterized 
by its arc-length. Here ST8ft_ consists of all unit (with respect to the metric) 
vectors on the boundary pointing inside ft. Since the tangent vector to the 
geodesic is related to the covector or ~ by the formula 91 = ~, we get 

Iq(J)(z, 8) = I t rnijh(t))~i(t)~j(t)dt 
-y i.j=1 

(3.5) 
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h -1 f -1 . d' ij - '\"' ii' f j' j I . were m = 9 9 or, m coor mates rn - L.,i' ,j' 9 i' j' 9 . t IS easy to see 
that if 

dg+tf = O,Vt 

then 

(3.6) 

Of course the transform f ---+ 19 U) is not injective because the distance function 
is invariant under change of variables which are the identity at the boundary. 
For the linearized problem this corresponds to 19(dv) = 0 for any tensor field v 
satisfying vir = O. Here dv denotes the symmetric covariant derivative of v. 

By Theorem 3.3.2 of [Sh) we can uniquely decompose the tensor 1;j into its 
solenoidal and potential parts, i.e. 

f = r + dv, vir = 0 (3.7) 

The natural conjecture is that 

IgU S ) = 0 => r = O. (3.8) 

This conjecture has been proved in [Sh) for Riemannian manifolds with 
boundary satisfying a positive bound on the sectional curvatures of 9. In other 
words the curvature cannot be too big. We remark that integral geometry of 
tensor fields has also been extensively studied in the very nice book [Sh) 

3.2 The local problem 

As mentioned earlier conjecture (3.8) has only been proved under the assumption 
of constant or negative curvature on the metric 9. The case of positive curvature 
remains open. 

The first local result, for metrics sufficiently close to the euclidean metric, 
was proven in [S-U2]. We now state the result. We denote by C~) (.0) the set of 

all f E Ck(fl) such that (Y' f = 0 on 0.0 for lal :S k. Then we have. 

Theorem 1. Suppose that 91 and 92 are two metr'ics satisfying {3.1}. Then there 
exists c > 0, such that if 

12 gin - e E C(O)(n), 119m - eIIC12(s7) < c, m = 1,2, (3.9) 

then theTe e:r;ists a Cll diffeomoTphism 1jJ : t2 ---+ t2 s'/J,ch that 1jJlr 
4)*g1 = 92· 

ld and 

The proof of Theorem 1 relies on deriving a new identity (see (3.19)) for 
the difference of the metrics and working in suitable chosen coordinates. The 
linearized version of the identity at the euclidean metric gives, roughly speaking, 
that the integrals along the geodesics (lines in the linear case) of the diffewllc(' 
of the two metrics is zero. Then one concludes that the metrics are the same 
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in those coordinates by inverting the X-ray transform. In section 3 of [S-U2] 
Theorem 3.1 was proven by using the identity and a perturbation argument 
that leads to the inversion of a Fourier integral operator. It is likely that this 
identity will also give stability estimates and it will have other applications. 

Recently Croke, Daiberkov and Sharafutdinov [C-D-S] have proven a different 
type of local result. In [C-D-S] it is assumed that the metric 9 satisfies the same 
curvature condition under which (3.8) is valid. Now assume that gl is a metric 
sufficiently dose to g in an appropriate topology. It is shown in [C-D-S] that 
the two metrics are isometric. This result doesn't imply Theorem 3.1 since the 
neighborhood of 9 depends on the metric g. Eskin [E] wrote an article a few 
months earlier than the paper [C-D-S] was submitted proving a similar result 
but assuming that the curvature of 9 is sufficiently small. 

3.3 The main identity 

In this section we give complete details of the identity proved in [S-U2]. 
Assume that we have two metrics gl and g2 satisfying 

(3.lO) 

with some k 2: 2 and E > O. Assume also that they satisfy (3.9). By (3.10), gl 
and g2 can be extended outside n as e and the so extended metrics belong to 
C k (R 3 ). From now on we will denote by gl and g2 the extended metrics. 

Let x(O) E r,~(O) E S2 such that v(x(O)). g-I~(O) < O. The integral curves of 
Hhgj,j = 1,2 tangent to the energy hgj = 1 are denoted by (Xgj,~gJ,j = 1,2. 
They solve the Hamiltonian system 

{ 
d _ ,,3 mj C 
ds Xm - ~j=1 9 <..,j, 

xls=o = .1:(0), 

.iLc - _1 ,,3 ~cc 1 2 3 
ds<"m - 2 ~i,j=1 ax", <"'<"J' m = , , , 
~Is=o = ~(O). (3.11) 

Here 9 is either gl or 92, while the initial conditions are the same for both 
metrics. We remark that if ~(O) . g-I~(O) = 1, then s is the arc-length in (3.11). 
The assumption (3.1) implies the following property. 

Lemma 1. Let g), 92 be two Riemannian metrics in tl with tl strictly convex 
with respect to anyone of them and aSS'/1,me gllr = g2lr. Assmne also (3.1). Let 
x g", , ~gm' m == 1, 2, be the solution of (3.11) with the same initial conditions 

.1: g1 (0) = :1: g2 (0) = :1:(0), ~91 (0) = ~92 (0) = ~(O). 

Then 

(3.12) 

when; t is the common length of the c01Tesl)(mding geodesics joining );(0) and 
:r'l1 (t) = :f y2 (t) ]Jmvided that ~(O) • g-l~(()) = 1. 
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Proof. This is a direct consequence of the discussion in section 2. Namely if the 
distance function for two metrics is the same then their scattering relation is 
the same. We give another proof due to Michel [MIl. Let x g1 he the geodesics 
related to gl defined above. Denote by 8 t-+ Yg2(8) the geodesics associated to 
g2 joining x g1 (0) and x g1 (t) E r, where t is the length of x g1 x g2 . In other 
words, Y92(0) = x g1 (0), Y92(t) = x g1 (t). Note, that t is also the length of that 
geodesic. By [Ml, Corollary 2.3], the geodesics x g1 and Yg2 are tangent at the 
common endpoints. Since Y!l2 solves (3.11) with 9 = g2 and initial data Yg2 = x(O), 

~(O) = T](O) with some T](O) , we get that T](O) = ~(O), because the two metrics 
coincide on the boundary. Therefore, Yg 2 solves (3.11) with 9 = g2 and by the 
uniqueness of that solution we get that Yg 2 = xY2 • This proves the lemma. 0 

Consider the Hamiltonian system (3.11) with the following initial conditions 

{ 
d _ ~3 mje. 
dSXm=~j=lg <'1' 

xls=-p - (-p, z), 
m = 1,2,3, 

(3.13) 

Here z E R2, P > 0 is such that 9 = e for Ixi > p and the solution x = X(8, z), 
~ = ~(8, z) depends on the parameter z. If 9 = e, then x = (8, z) = (8, zl, Z2). 

We now introduce as new coordinates Y = (8, z). Since the metrics are close 
to the euclidean metric it is easy to see that the map n 3 x t-+ Y is close to Id 
in the Ck - 1 topology for small c > 0 and therefore is a diffeomorphism. In the 
new coordinates g-l = (gij) will have the form 

(gij) = (~g~2 g~3) . 
o g23 g33 

(3.14) 

Notice that 9 would have a similar form, too. 
Denote by 'l/h, 'ljJ2 the maps x t-+ Y related to gl, g2, respectively. Instead of 

gl, g2, consider ih = 'IjJ; gl and g2 = 'ljJ2 g2, respectively. It is easy to see that oS is 
the length parameter in (3.13) and therefore (3.1) implies 'ljJ1 (r) = 'ljJ2(r). So, 
both 'ljJ1 and 'ljJ2 map n to a new domain n. We also have that 'ljJ1 = 'ljJ2 outside 
n. Therefore, (3.1) remains true for gl, g2 in n and instead of (3.10) we have 

(3.15) 

with some C > o. We aim to prove that gl = g2. This would prove Theorem 3.1 , 
because it would imply 'IjJ* gl = g2 where'IjJ := 'IjJ;;1'IjJ1 would be a diffeomorphism 
in n fixing the boundary. For the sake of simplicity of notation, let us denote 
the new metrics again by gl, g2 and n by n. 

Denote the solution of (3.11) by x = X(8,X(O),~(O)), ~ = ~(8,X(O),~(O)). Let 
us introduce new notation 

X := (x,~). 

The solution to (3.11) related to gl and g2, respectively, can therefore be written 
down as Xgj = X gj (8,X(O)) = Xgj(8,X(O),~(O)). 
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Set F(s) := X g2 (t - s,Xy]\S,X(O))). Here t = t(X(O)) is the length of the 

geodesics issued from X(O) with endpoint on rand t is independent of.!l = .!I) or 

9 = 92· Notice that the :r-cornponent of F( s) lIlay not bt~ in [2 but belongs to a 
neighborhood of r small with c. By (3.12), F(O) = X!l2 (t, X(O)) = X YI (t, X(O)) = 
F(t). Thus 

it F'(s) ds = O. (3.16) 

Denote Vr" := (aHq)a~, -aHg)a:r), .i = 1,2. Then 

F '( .) - 11 (V (t . v (. viOl))) aXg2 (t . v (. \,(0))) 
.S - -~!l2 "".'i2 ,- .s,""g] S,A + aX(O) . - .S'""'!1 s," 

V!l1 (Xy] (s, X(O))). (3.17) 

We claim that 

aX 
11 (V 'f . v (. viol))) - 92 ('t . X (. 'v(O))) ~Y2 ""Y2(,-S'""YI 8,A - aX'(O) ,-8, 91 S,A 

Vy2 (X!l1(S,X(r)))), (3.18) 

Indeed, (3.18) follows from 

o = ~I X(T - s, X(s, X(O))) = - V(X(T X(O))) 
ds 8=0 

aX 
+-"-(T X(O))F(X(O)) \:IT (3,19) aX(O) , , 

after setting T = t - s. Therefore, (3.16), (3.17) and (3.18) combined together 
imply 

(3.20) 

Formula (:3.20) is the main result Ilsed in [S-U2] to prove t.hat t.hf~ met.rics 
coincide. This identity is a non-linear integral equation Oil t.h(' difference of t.he 
metrics 9) and 92· We formally linearize this identity at the euclidean metric to 
explain how t.o prove that the metrics coincide. In ot.her words, we will formally 
replace X YI and X q2 by X e , where e is the euclid(~an metric, but we will keep 

V'll and 1 :42' 
Suppose 9 = e. Then X, = (J;C'~f) solves:r; = ~C, ~; = 0, therefore i; = 

(~, 0). It is easy to see that. ill this case 

y, = (1 s) \r ( 0 ) 
" ( () 1 "' , 

aX, (IS) 
aX(O) = () 1 . (3.21 ) 

Since V = (g-I~, - ~ Y.r (g-1 0 . 0 (recall that g-l = {g')}), We' gf't t he following 
forrnallinearizatioll formula for (3.20) 

(3.22) 
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where {mij} := {g~j} - {g~j}, x(O) E r, ~ = ~(O) E S2 and ~(O) . v(x(O)) < O. By 
(3.14), m has the form 

(0 0 0) 
m = 0 m22 m23 . 

o m23 m33 

(3.23) 

Equating the second components of both sides in (3.22), we get 

(3.24) 

for x(O) and ~ as above. This equation easily implies 

3 

L "Imij("I)~i~j = 0 for ~. "I = 0, (3.25) 
i,j=2 

where m("I) is the Fourier transform of m(x) extended as 0 outside n. Let 
P = (0,P2,P3) E S2 be a parameter. Picking 

(3.26) 

we get 

Choosing P = (0,1,0) yields 

(3.28) 

therefore m33 = O. Next, setting P = (0,0,1) in (3.27) leads to 

(3.29) 

so m22 = O. And finally, choosing P = (0,1, 1)/V'i, we obtain 

2' () 2' () 22' () "II m33 "I + "II m22 "I - "II m23 "I - 0 
"I 2 ( )2/ - , "II + "13 - "12 2 

(3.30) 

thus m23 = O. 
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4 Open problems 

In this section we mention some open problems directly related to the conjecture 
(3.2). 

Boundary determination. Suppose we know dg . Can we recover, in appro­
priate coordinates, all the derivatives of 9 at the boundary? This result was 
proven in the two dimensional case in [M2]. If the answer is affirmative it is 
likely that one can prove conjecture (3.2) for real-analytic metrics. Also, we 
wouldn't need to assume that. the metrics coincide at the boundary in the 
statement of Theorem 3.1. 

- Compactness Moding-out by the group of diffeomorphisms which are the 
identity on the boundary, is the set of metrics having the same boundary 
distance function compact in some appropriate topology? A result of this 
kind combined with the local results [C-D-S], [S-V2] would probably lead to 
a proof that, under appropriate restrictions on the curvature, there is only a 
finite number of metrics (up to isometry) with the same boundary distance 
function. 
The two dimensional case In this case we can use isothermal coordinates [A] 
to reduce the problem to the isotropic case. The problem is that the change 
of variables produced in this fashion is not the identity at the boundary and 
we cannot use Mukhometov's result. It is easy to see that it is enough to 
prove that the change of variables resulting at the boundary is the boundary 
value of a conformal map. 

- Caustics Most of the results mentioned in this paper on the conjecture as­
sume that the domain (or manifold) is geodesically convex. It is very easy to 
find counterexamples if the function dg is multivalued [G-M1]. However, tlw 
scattering relation is well defined by just assuming that there are no trapped 
geodesics. Is it possible to generalize the known results about recovering the 
metric from the boundary distance function to recover the metric (up to 
isometry) from the scattering relation? 
The Dirichlet to Neumann Map It was proven in [Sy-U2] that from the hy­
perbolic Dirichlet to Neumann map we can recover the boundary distance 
function, assuming again that fl is geodesically convex. Is there any COImec­
tion between the elliptic Dirichlet to Neumann and the boundary distance 
function dg ? As mentioned above to know the elliptic DN map is the same 
as knowing the set of Cauchy data (1.6). This set is vaguely resemblant of 
the scattering relation (2.16). 
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