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Abstract. We consider the inverse problem of determining a Rieman-
nian metric in R™ which is euclidean outside a ball from scattering infor-
mation. This is a basic inverse scattering problem in anisotropic media.
By looking at the wave front set of the scattering operator we are led to
consider the “classical” problem of determining a Riemannian metric by
measuring the travel times of geodesics passing through the domain. We
survey some recent developments on this problem.

1 The inverse scattering problem

Anisotropic materials include most crystals. A common case of aniso-tropy rel-
evant to some Earth structures is transverse isotropy. The inverse scattering
problem for this type of media is not very well understood at present. There are
many mathematical difficulties associated with the inverse scattering problem
for anisotropic Maxwell’s equations or the system of elasticity for anisotropic
materials. A more basic example of anisotropic media, which involves the study
of a scalar partial differential equation, is the case of anisotropic conductors. In
this case the electrical conductivity of the medium is represented by a positive
definite, symmetric matrix. It is more convenient to look at the conductivity
in geometric terms, thus we are going to think of it as a Riemannian metric.
Notice that this equivalence between Riemannian metrics and conductivities is
valid only in dimension n > 3 [L-U].

Let g(z) = (gij(x)) be a positive definite, symmetric matrix on R",n > 2.
We assume that the Riemannian metric g is smooth (many of the results in this
paper are valid assuming finite smoothness). We also assume that the metric is
euclidean outside a ball B of radius R centered at the origin, that is g;; = d;; for
|z| > R where 6;; denotes the Kronecker delta. The euclidean metric is denoted
by e = (d;;). We assume throughout this paper that there are no trapped rays
in B, that is any geodesic for the metric ¢ starting at a point in B leaves B in
finite time.

We denote by A, the Laplace-Beltrami operator associated to the metric g,
i.e. in local coordinates

. n 6 . ) a
Ay = (detg)™d ) o (detg) gt 5 (L.1)

ij=1
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where (g9) = (gi;) !, det g = det(g;;). Given A € R—0,w € S, the outgoing
eigenfunctions, ¥4(X, z,w) are solutions of

Agthy + Npy =0 (1.2)
which have the asymptotic behavior

ag(A, 0, w)eirlel

hy = €N = +O(z|" =Y (1.3)

|z

where 0 = ]:_l The function a4(A,0,w) is called the scattering amplitude. It
measures, roughly speaking, the amplitude of the radial scattered wave which
resulted from the interaction of the incident plane waves e***"“ with the pertur-
bation of the euclidean metric given by g.

The inverse scattering problem is whether one can determine the metric g
from ay, i.e. to study the non-linear map sending g to a,. It is easy to see that
it is not possible to determine the metric uniquely from this information. Let 1)
be a smooth diffeomorphism of R™ which is the identity outside B. We define
vy = g 0~ A straightforward calculation shows that v, satisfies

ApugVg + N1 =0 (1.4)

where 1)*g denotes the pull back of the metric g under the diffeomorphism
that is

g = (DpogoDy)oy™.
Since the asymptotic behavior of v, and the 1, at infinity is the same we conclude
that

Ay g = Q. (1.5)

The natural conjecture is that (1.5) is the only obstruction to uniqueness. This
conjecture was proven recently. It is a consequence of the paper [B-K] which
uses the boundary control method (BC) pioneered by Belishev (see [B] for a
survey). In turn this method depends on a Holmgren type uniqueness theorem
for hyperbolic equations which was proven by Tataru [T]. See also [R-Z].

The BC method has been greatly extended to solve the inverse scattering
problem for any first order and zeroth order selfadjoint perturbation of the
Laplace-Beltrami operator [K]. There are also recent results for the case of non-
selfadjoint perturbations [K-L].

We remark that if two metrics g;, go are conformal to each other (i. e. g; =
a(z)gy with a a non-zero function) and ¢ * g; = g2 with ¢ a diffeomorphism of
R"™ which is the identity outside B then 1 must be the identity and therefore
g1 = g2-

The above mentioned results assume that we know the scattering amplitude
for all frequencies and directions. Of course, this is too much information and we
would like to measure the scattering amplitude for a more restricted set of angles
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and frequencies. An interesting physical problem is the inverse backscattering
problem i.e. we measure az(\, 0, —6) for all A € R — 0 and all § € S"~'. The
information given depends on n variables. The only known result about this
problem is the following: if two metrics are conformal to each other and they are
a priori close to the euclidean metric, then the two metrics are the same if their
backscattering amplitudes are the same. This is not exactly the result stated in
[S-U2] but the methods used there give this result.

Another inverse scattering problem which involves less data is the fixz energy
problem. In this case we measure the scattering amplitude at a fixed frequency
Ao for all angles §,w € S™7'. The scattering amplitude a,(Ao,f,w) depends
on 2n — 2 variables. It is well known (see for instance [U]) that knowledge of
ay(Ao,0,w) determines the set of Cauchy data for the Laplace-Beltrami operator
on B. Namely we can recover from ay(Xo,6,w)

Cyno = {(ulsB, g—u|39), with u € H?(B) solution of (1.2) on B.} (1.6)
v

Notice that if A is not a Dirichlet eigenvalue for the Laplace-Beltrami operator
then the set of Cauchy data is the graph of the Dirichlet to Neumann map A, ), .
In the class of metrics conformal to the euclidean metric, it was proven in [Sy-
U1] in dimension n > 3 that Cj », uniquely determines the metric g. In [L-U] it
is shown in dimension n > 3 that Cy 5, uniquely determines g for real-analytic
metrics. The smooth case remains open. The linearization of this problem is
studied in [Sy-U2].

In the two dimensional case the anisotropic problem is in some sense easier
since we can reduce it to the isotropic case by using isothermal coordinates [A].
In fact in this case the Laplace-Beltrami operator can be transformed, after a
change of coordinates, to a conformal multiple of the standard Laplacian. Thus
we can transform (1.2) into

Ax)A+ A\

with ¢ positive and equal to 1 outside B. In this case it is not known at present
for general smooth ¢ whether we can recover ¢ from the scattering amplitude at
a non-zero fixed energy. It is known under the a priori assumption that ¢ is small
enough [Sy-U3] or for a generic set of ¢'s [Su-U1,2]. The anisotropic conductivity
equation, which is the analog of (1.2), is given by

2
0 0y o

Z oz, Bz, + APy =0
7,j=1
with v = (%) a positive definite, symmetric smooth matrix which is the identity
outside B. As before the inverse scattering problem at a fixed energy can be
reduced to the question of whether the set of Cauchy data C., , determines ~
uniquely up to conjugation by a group of diffeomorphism which is the identity
on the boundary of B. A modification of the method of [A] allows us to reduce
the problem to the case of an isotropic conductivity [S]. If Ay = 0 the isotropic
problem was solved in [N] (see also [B-U] for another approach that allows for
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less regular conductivities). For the case Ao # 0 uniqueness it is not known
at present. Uniqueness has been proven for small enough conductivities or for
generic conductivities [Su-U1,2].

In this paper we consider other information obtained from the scattering am-
plitude which involves less variables than the full scattering amplitude. Namely
we will consider the singularities of the scattering operator whose kernel is, essen-
tially, the distribution obtained by taking the Fourier transform of the scattering
amplitude in the frequency variable. This leads to the problem of determining
a metric from the scattering relation, which as we explain in the next section,
can be considered as the “classical” analog of the inverse scattering problem.
Knowledge of the scattering relation means that if we know the point of entry
of the geodesic into B and its direction, we can determine the point of exit
of the geodesic from B and the direction of exit. As we also show in section
2 the scattering relation determines, under some additional assumptions, the
geodesic distance dy(z,y),z,y € 0B between points in the boundary of the ball.
This function measures, roughly speaking, the travel time of geodesics passing
through B. The inverse kinematic problem arising in seismology is to determine
the metric ¢ from these travel times. We discuss in section 3 this problem in
detail. We make emphasis on a new identity which was derived in [S-U2] and
played a fundamental role in proving that we can uniquely determine a metric
sufficiently close to the euclidean metric (up to isometries) from its travel times.
This is formula (3.19). We list in section 4 some open problems.

2 The scattering relation

To define the scattering operator and study its singularities we use the Lax-
Phillips of scattering which uses the wave equation to define the scattering op-
erator. It is quite natural in this context to use the wave equation since it is well
understood how singularities propagate for solutions of this equation. For more
details see [G].

Let (ug,u1) € CP(R™) x C§°(R™). We define the group of operators

du(t)

Uy (t)(uo, wr) = (u(t), — = (1)) (2.1)
where u solves the wave equation
0%u
?9—1;'2' - Agu = 0 (22)

We denote by U, (t) the operator corresponding to the euclidean metric. The U S
are unitary groups associated to the energy space H, defined as the completion
of C°(R™) x Cg°(R™) under the norm defined by

n

o)l = [ ol + 3 g2 2 detg) a (23)

1,7=1
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We denote by H, the energy space corresponding to the euclidean metric.
The Wave Operators are unitary operators from H, to H. which are defined
by

Wy = lim U (=t)U,(t) (2.4)

t—+too

The scattering operator, which is a unitary operator from H,. to itself, is defined
by

Sy, =w,w=! (2.5)

It follows from finite speed of propagation of solutions of the wave equation that
to compute W, acting on compactly supported data we don’t need to take the
limit in (2.4). Namely for k € H, compactly supported, Wik = U.(—t) o U,(t)k
for +t sufficiently large.

We now explain the connection between the scattering amplitude as defined
in (1.3) and the scattering operator. In the context of the Lax-Phillips theory
of scattering this is seen using a modification of the Radon transform to reduce
the problem to a one dimensional problem depending on some parameters.

Let

R:&'(R") — &' (R x S™ Y

be the Radon transform

Ri0) = [ fe)ioa) (26)
where do is normalized Lebesgue measure on the hyperplane {z -6 = s}. Acting
in the z-variable, R is defined on those elements of D'(R™ x R x S™~!) having
compact support in z for each ¢, w.

It is well-known that the Radon transform intertwines the n-dimensional
Laplacian with the one-dimensional Laplacian, i.e.,
0? ,
The modified Lax-Phillips Radon transform [L-P] which maps C?- to C- valued
distributions, is defined by

RAu =

Rip(uo,ur) = CuDs? (DyRuo — Ru), n odd. (2.8)

n—1
For n even, in (2.8) one replaces Dy 2 by |Ds| "= . Rypisa unitary isomorphism
from the free energy space H,. to L?(R x S™~1). Furthermore the modified Radon
transform has the key property that it intertwines the free group associated to
solutions of the wave equation with the translation group on R x S*~!. Namely
we have

RipUp(ug,ur) = TyRp p(ug, ur) (2.9)
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where T; denotes the translation group to the right:
Tif(s) = fls—t),f € 'R xS"H).
The scattering operator in “Radon transform land” is defined by
Sy = RypSyRpp. (2.10)

S, is a unitary operator from L*(R x S"7!) to itself. It is easy to see that
it is invariant under translation since the coefficients of the wave equation are
independent of #. Thus, S, is a convolution operator in the s-variable, which can
be written as

S,f(s,0) = If(s,0) + /5 ky(s — 5',60,w) f(w)dw (2.11)

where I denotes the identity operator. The distribution k,(s,f,w) is called the
scattering kernel. We have that

ag(X,0,w) = (:n/\"_3/ e"iS)‘kg(s,H,w)ds (2.12)
R

where ¢,, is a constant.

This is a rough outline of the “quantum” picture using the wave equation
approach. We describe now the “classical” picture in phase space by computing
the singularities of the operators defined above.

It is a well-known result of Hérmander that singularities of solutions of the
wave equation propagate along null-bicharacteristics. We consider the principal
symbol of the wave equation

pt,x,7,8) =7° — hy(z,£) (2.13)
with
hy(z,€) = Z 9YEE; (2.14)
i,j=11

The Hamiltonian vector field associated to p (resp. h,) is defined by

op 0 " 9p 9
= 97— — £z
T Zf}{j 813] jary (‘)CEJ‘ fj’

oh, 0 Ohy 0 .
(resp. Hy,, = Z 8—5;8—@ - Z X §] (2.15)

The bicharacteristics are integral curves of the Hamiltonian vector field H, »- The
integral curves of Hj, are tangent to the energy surface hy, = 1. We denote the
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bicharacteristic flow of H,, (resp. Hy,) at time t by &(t) (vesp. @, (t).) We remark
that the geodesics of the metric g are the projections of the hicharacteristics over
z-space. In fact this is another way to define geodesics. U, (t) is a Fourier integral
operator whose canonical relation is given by

Cyt) = {((x,8),(y.m) € T"(R") =0 x T"(R") = 0; (2.16)

(t,7,2,8) = (0,7, y,m), with 7 = +1/h,(y. 1)}

The "classical” free space is T*(R™ — B) — 0 together with vector field Hj,_
The perturbed “classical” space” is T*(R") — 0 together with the vector field
H,,,. The natural “classical” analog of the wave operators (2.4) is given by the
diffeomnorphisms

Uy = lim O.(-t)0,t) :T"(R")-0—T"(R"-B) -0 (2.17)

t—Fo0
and the “classical” scattering diffeomorphism is given by
P, =0, oW ' :T*R"-B)-0— T (R"-B)-0 (2.18)
The scattering relation is the graph of @, that is, for some #

Ry = {((r.8). (ym)) € (B ~ B) x §" x (R" ~ B) x §"~"
(x.§) = Qﬂ(t)('!/ﬂl)} (2.19)

To know the scattering diffeomorphism @, is equivalent to knowing the scattering
relation R,. Let ¥ = {x - wy = o - wo} be an hyperplane supported in R" — B
with normal wy € S"~! and the point 29 € R" — B near B.

Under the assumption of no conjugate points on the metric g near B (no
caustics) the solution of the Hamilton-Jacobi equation near B

Hy(a,d;S)=0, S=0o0nX (2.20)

is given by S(x) = d,(x, ¥) where d,(x, X') denotes the geodesic distance from .«
to the hyperplane Y. The Lagrangian manifold .1 obtained by the flow-out from
Y by the integral curves of Hj, tangent to h, = 1 is given by .1 = (. dS(x)).
To know the scattering relation is equivalent to knowing .1 in T*(R" — B).
We then conclude that to know the scattering relation is equivalent to knowing
this geodesic distance for all hyperplanes supported outside the ball. Since the
metric is cuclidean outside B we conclude that to know the scattering relation
is equivalent to knowing d,(x,y),Va,y € 0B. Physically this corresponds to
knowing the travel times of geodesics passing through B.

3 The boundary distance function

In the last section we motivated the problem of determining a Riciannian metric
on a bounded domain 2 in R” from the geodesic distance function d, (r.y). ..y €
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012. This function is also called the hodograph or the boundary distance function.
This problem arose in geophysics for the case in which the metric is conformal
to the euclidean metric, i.e. g;; = ‘6'1751']'. In the literature this problem is referred
to as the inverse kinematic problem. The function ¢ models the sound speed of
the medium. This problem has also attracted the interest of geometers because
of rigidity questions in Riemannian geometry (see for instance [C1,2], [Gr], [M1],
[O]). The problem can be formulated for general Riemannian manifolds with
boundary.

We now state the problem more precisely. Let {2 be a bounded open set in R™
with smooth boundary I". We assume that {2 is strictly convex with respect to g,
i.e., for any two distinct points x € 2, y € {2 there is a unique geodesic joining
z and y lying entirely in {2 with the possible exception of the endpoints z and y.
Let dg4(z,y) denote the geodesic distance between z and y. The inverse problem
we address in this section is whether we can determine the Riemannian metric ¢
knowing dy(z,y) for any z € I', y € I'. As in (1.5) it is easy to see that g cannot
be determined from this information. We have dy-, = d, for any diffeomorphism
¥ : 2 = £ that leaves the boundary pointwise fixed, i.e., 1|r = Id, where Id
denotes the identity map and t*g is the pull-back of the metric g. R. Michel
conjectured in [M1] that this is the only obstruction to uniqueness, namely if
we have two Riemannian metrics g1, g» with {2 strictly convex with respect to
both, and if

dy, (2,y) = dg, (z,y) V(z,y) € I?, (3.1)
there exists a diffeomorphism 1 : 2 = 2, |r = Id, so that

g2 =v"g1. (3.2)

As noted earlier in the case that the metrics g; and g2 have the same bound-
ary distance function and are in the same conformal class then the diffeomor-
phism must be the identity and therefore the conjecture in this case is that the
metrics are the same.

In [G-M1,2] (see also [C-S]) the case of radial metric conformal to the eu-
clidean is considered (i.e. the sound speed is assumed to be radial.) The first
general result was proven by Mukhometov [Mu], who showed in two dimensions
that if two metrics are conformal to the euclidean metric and the domain is
geodesically convex for the two metrics then the metrics are the same. More-
over, he proved a stability estimate. The proof is very original and uses a form
of an energy inequality for this problem. Energy inequalities are of standard use
for hyperbolic equations but Mukhometov’s energy inequality was, at the time,
completely new. We also note that in two dimensions the problem is formally
determined since the hodograph depends on two variables. Mukhometov’s result
was generalized to higher dimensions in [Mu-R] using a similar method. In [B-G]
and [Be] it proved in all dimensions n > 2, again under the geodesically convex
assumption on {2, that if two metrics are conformal to each other and they have
the same hodograph then they must be the same. Also in [B-G], [Be] stability
estimates are proved in this case. Croke [C1] gave a nice geometric proof of the
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uniqueness part of the main result in [B-G], [Be] on Riemannian manifolds with
boundary satisfying an additional assumption which is weaker than geodesically
convex. As far as we know the stability estimates of [B-G] and [Be] don’t follow
from Croke’s argument.

The conjecture (3.2) has been considered in [Gr], [M1] for general Rieman-
nian manifolds with boundary under some assumptions on the curvature. In
particular they have shown that if M is a Riemannian manifold with boundary
and Riemannian metric g, geodesically convex with respect to g, the conjecture
is valid if M is any compact subdomain of R", any compact subdomain of an
open n-dimensional hemisphere or any compact subdomain of the hyperbolic
plane. In two dimensions in [G-N] the conjecture is proved under some restric-
tions on the behavior of an extension of the metric to R? which are essentially
a condition of negative curvature on the extension of the metric. The latter re-
sult was generalized in [C2],[0] in two dimensions for negatively curved surfaces
with boundary under less stringent condition that geodesically convex and to
n-dimensional negatively curved Riemannian manifolds with boundary under
additional restrictions [C1].

3.1 The linearized problem

We consider the linearization of the map

g —d, (3.3)

in the direction of a C§°(§2)-tensor field fi;,7,7 = 1,...,n. We consider the Hamil-
tonian vector field Hy, and we denote by (z(t),£(t)) the integral curves of Hj,,
on the energy level hy = 1. We are going to use the following parameterization
of those integral curves. Let us denote

ST*0N_ = {(2,w) € ST*00; 2 € 0N, we S" !, g7 'w v(z) < 0}.

where v(z) is the outer unit normal to 2. Let us introduce the measure du(z,w) =
g 'w - v(2)dS.dw on ST*Af2_, where dS, and dw are the surface measures on
012 and S !, respectively. Then (z(t),£(t)) = (z(t; z,w), £(t; z,w)) is defined as
the integral curve of Hj,, issued from (z,w) € ST*02_.

Now we define the geodesic X-ray transform by

3
LG = [ 3 56 oy @ (3.4)
Y 5=1
where y(t) = v(t; 2, 6) is the geodesic issued from, (z,6) € STOS2_ parameterized
by its arc-length. Here STOf2_ consists of all unit (with respect to the metric)

vectors on the boundary pointing inside (2. Since the tangent vector to the
geodesic is related to the covector or £ by the formula g% = £, we get

3
1,(/)(z,0) = / S (4 ()& (1) di (3.5)

Vij=1
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where m = g~ fg~! or, in coordinates m* = > i gii/ fi'j/gjlj. It is easy to see
that if
dg+tf — O,Vt

then
Iy(f) =0. (3.6)

Of course the transform f — I,(f) is not injective because the distance function
is invariant under change of variables which are the identity at the boundary.
For the linearized problem this corresponds to I,(dv) = 0 for any tensor field v
satisfying v|r = 0. Here dv denotes the symmetric covariant derivative of v.

By Theorem 3.3.2 of [Sh] we can uniquely decompose the tensor f;; into its
solenoidal and potential parts, i.e.

f=f+dv, vlr=0 (3.7)
The natural conjecture is that
I(f)=0= f*=0. (3.8)

This conjecture has been proved in [Sh] for Riemannian manifolds with
boundary satisfying a positive bound on the sectional curvatures of g. In other
words the curvature cannot be too big. We remark that integral geometry of
tensor fields has also been extensively studied in the very nice book [Sh]

3.2 The local problem

As mentioned earlier conjecture (3.8) has only been proved under the assumption
of constant or negative curvature on the metric g. The case of positive curvature
remains open.

The first local result, for metrics sufficiently close to the euclidean metric,
was proven in [S-U2]. We now state the result. We denote by C(’B)(Q) the set of

all f € C*(12) such that 9% f = 0 on 012 for |a| < k. Then we have.

Theorem 1. Suppose that g, and g» are two metrics satisfying (3.1). Then there
exists € > 0, such that if

g — € € Cl (1), Nlgm —ellerzay <& m=1,2, (3.9)

then there exists a C'' diffeomorphism ¢ : Q — 2 such that ¥|r = Id and
Vg = g

The proof of Theorem 1 relies on deriving a new identity (see (3.19)) for
the difference of the metrics and working in suitable chosen coordinates. The
linearized version of the identity at the euclidean metric gives, roughly speaking,
that the integrals along the geodesics (lines in the linear case) of the differcnce
of the two metrics is zero. Then one concludes that the metrics are the same
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in those coordinates by inverting the X-ray transform. In section 3 of [S-U2]
Theorem 3.1 was proven by using the identity and a perturbation argument
that leads to the inversion of a Fourier integral operator. It is likely that this
identity will also give stability estimates and it will have other applications.

Recently Croke, Daiberkov and Sharafutdinov [C-D-S] have proven a different
type of local result. In [C-D-S] it is assumed that the metric ¢ satisfies the same
curvature condition under which (3.8) is valid. Now assume that ¢, is a metric
sufficiently close to ¢ in an appropriate topology. It is shown in [C-D-S] that
the two metrics are isometric. This result doesn’t imply Theorem 3.1 since the
neighborhood of g depends on the metric g. Eskin [E] wrote an article a few
months earlier than the paper [C-D-S] was submitted proving a similar result
but assuming that the curvature of g is sufficiently small.

3.3 The main identity

In this section we give complete details of the identity proved in [S-U2].
Assume that we have two metrics g; and g, satisfying

g—eeCly(Q), llg—ellora << (3.10)

with some k& > 2 and € > 0. Assume also that they satisfy (3.9). By (3.10), ¢,
and ¢, can be extended outside {2 as e and the so extended metrics belong to
C*(R?). From now on we will denote by g; and go the extended metrics.

Let (% € I €9 € S% such that v(z(?)) - g716© < 0. The integral curves of
thj ,J = 1,2 tangent to the energy h,, = 1 are denoted by (r,,.&,,),j = 1.2.
They solve the Hamiltonian system

i 3 j ! 153 39"
{ tmm = Zj:l g”ljfj’ ‘;76171 = T3 2 =1 ’gfr%éiij m=1.23, (3 11)

Here ¢ is either ¢g; or g,, while the initial conditions are the same for both
metrics. We remark that if £(© - g71¢(©) = 1 then s is the arc-length in (3.11).
The assumption (3.1) implies the following property.

Lemma 1. Let gy, g» be two Riemannian metrics in 2 with (2 strictly convex
with respect to anyone of them and assume g1|p = ga2|r. Assume also (3.1). Let
Ty, &g o= 1,2, be the solution of (3.11) with the same initial conditions

25, (0) = 2,(0) = 2%, €,,(0) = &,(0) = £,
Then
;1:1}1 (t) = :’:!Iz(t) € Fv ggx (t) = 592 (t)7 (312)

where t s the common length of the corresponding geodesics joining 'Y and
2y, (1) = 2y, (1) provided that £ - g ¢ = 1.
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Proof. This is a direct consequence of the discussion in section 2. Namely if the
distance function for two metrics is the same then their scattering relation is
the same. We give another proof due to Michel [M1]. Let z,, be the geodesics
related to g; defined above. Denote by s — y,,(s) the geodesics associated to
g joining z,4,(0) and =z, (t) € I', where t is the length of z, x,,. In other
words, yg,(0) = z4,(0), yg,(t) = z4,(t). Note, that ¢ is also the length of that
geodesic. By [M1, Corollary 2.3], the geodesics z,, and y,, are tangent at the
common endpoints. Since yg, solves (3.11) with g = g» and initial data y,, = 27,
£(0) = 79 with some 5, we get that 7(¥ = £ because the two metrics
coincide on the boundary. Therefore, y,, solves (3.11) with g = g» and by the
uniqueness of that solution we get that y,, = x,,. This proves the lemma. U

Consider the Hamiltonian system (3.11) with the following initial conditions

Lo =Y"_10™¢, Lo =-1Y0_ 5068, m=123,
xls:—p = (—P,Z)’ £|s=—p = (1a0)0)'
(3.13)

Here z € R%, p > 0 is such that g = e for |z| > p and the solution z = z(s, 2),
& = £(s, z) depends on the parameter 2. If g = e, then z = (s, 2) = (s, 21, 22).
We now introduce as new coordinates y = (s, z). Since the metrics are close
to the euclidean metric it is easy to see that the map {2 3 = — y is close to Id
in the C*~! topology for small € > 0 and therefore is a diffeomorphism. In the

new coordinates g~! = (¢g%) will have the form
- 10 0

(97)=[0g%24% |. (3.14)
0 g% g%

Notice that g would have a similar form, too.

Denote by 41, 12 the maps = — y related to g1, g2, respectively. Instead of
g1, g2, consider g; = ¥jg; and g» = ¥3 g2, respectively. It is easy to see that s is
the length parameter in (3.13) and therefore (3.1) implies ¢ (I") = 12(I"). So,
both ¢, and v, map {2 to a new domain 2. We also have that Y1 = 1 outside
0. Therefore, (3.1) remains true for §;, > in 2 and instead of (3.10) we have

91— 3 € Clp, 2 (), Ngm — ellcr-2(ay < Ce, m=1,2 (3.15)

with some C' > 0. We aim to prove that g; = g». This would prove Theorem 3.1 ,
because it would imply ¥*g; = g where ¢ := 1) 4h1 would be a diffeomorphism
in f2 fixing the boundary. For the sake of simplicity of notation, let us denote
the new metrics again by g1, g» and 2 by 1.
Denote the solution of (3.11) by z = z(s, 29, £©), ¢ = (5,2 £0)), Let
us introduce new notation
X = (z,9).

The solution to (3.11) related to g; and gs, respectively, can therefore be written
down as ng = ng (S,X(O)) = Xg (371‘(0)’6(0)).

J
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Set F(s) := Xy, (t — 5, X,,(5, X)), Here t = (X)) is the length of the
geodesics issued from X(® with endpoint on I' and t is independent of g = gy or
g = g2 Notice that the z-component of F'(s) may not be in {2 but belongs to a
neighborhood of I' small with ¢. By (3.12), F(0) = X, (t, X" = X, (¢, X)) =
F(t). Thus

t
/ F'(s)ds = 0. (3.16)
0

Denote V,, := (0H,, /0¢, -0H,, /0x), j = 1,2. Then

0X . .
St (= 5. (5, X))

Vi, (X, (5, X)), (3.17)

We claim that

‘92()&512“ "Xgl(s7‘¥. )))

F,(S) = "‘ng (Xyz (t— 57Xy1 (SvX(O)))) +

0X,,
0X(0)
'02 (‘X!Jl(sa‘Y(O)))~ (318)

(t =5, X, (s,X'"))

Indeed, (3.18) follows from

d
0= @), X(T—s,X( Xy = v (X (T, X'
8‘1" (T, XNV (x©Oy, vyr (3.19)

after setting T' = t — 5. Therefore, (3.16), (3.17) and (3.18) combined together
imply

! 6‘Y92
o 0X(©

Formula (3.20) is the main result used in [S-U2] to prove that the metrics
coincide. This identity is a non-linear integral equation on the difference of the
metrics g; and g,. We formally linearize this identity at the euclidean metric to
explain how to prove that the metrics coincide. In other words, we will formally
replace X, and X, by X,, where e is the euclidean metric, but we will keep
Vy, and V.

Suppose g = e. Then X, = (x.,&) solves 2. = &, & = 0, therefore |, =
(£,0). It is easy to see that in this case

(1S v oX, _[1s .
Xe = (0 1> X OXO T 01/ (3.21)

Since V = (97'¢, =5V, (g7 '€)-€) (recall that ¢~ ! = {9 }). we get the following
formal linearization formula for (3.20)

(=5, X0, (5, X)) (Vyy = Vi) (X (5. X)) ds = 0. (3.20)

y
/ (mf - %(f - 5)V,.(m&) - &, ——V (mé&) - f) 0 sy ds = 0, (3.22)
0
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where {mi;} = {97} = {g¥}, 2@ € I, € = ¢ € §2 and ¢ . y(z(?)) < 0. By
(3.14), m has the form

00 O
m = 0 Moo Mo3 . (323)
0 ma3 ma3

Equating the second components of both sides in (3.22), we get

t 3
/0 > Ve (2 + s€)6i&ds = 0 (3.24)

ij=2
for (9 and ¢ as above. This equation easily implies

3

> ()& =0 for €9 =0, (3.25)

4,j=2

where 7(n) is the Fourier transform of m(z) extended as 0 outside §2. Let
p = (0,ps,p3) € S? be a parameter. Picking

nXp (p3n2 — pam3, —Pani, Pam)
£= ) = ol = P n (3.26)
In x pl Vn? + (psn2 — pams)
we get,
panitnas(n) + piniias () — 2papsnithes(n)
n 5 . =0. (3.27)
n; + (p3m2 — pans)
Choosing p = (0,1,0) yields
Uit
n—f———-rmgg(ﬂ) = 0, (328)
o+

therefore mgs = 0. Next, setting p = (0,0,1) in (3.27) leads to

2
UR o

: S 1) =0, 3.29

) (3.29)

$0 ™y, = 0. And finally, choosing p = (0,1,1)/+/2, we obtain

nnfﬁ%ss(n) + gy (1) — 2nirhas(n)
n? + (ny —m2)?/2

=0, (3.30)

thus my3 = 0.
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Open problems

In this section we mention some open problems directly related to the conjecture
(3.2).

Boundary determination. Suppose we know d,. Can we recover, in appro-
priate coordinates, all the derivatives of g at the boundary? This result was
proven in the two dimensional case in [M2]. If the answer is affirmative it is
likely that one can prove conjecture (3.2) for real-analytic metrics. Also, we
wouldn’t need to assume that the metrics coincide at the boundary in the
statement of Theorem 3.1.

Compactness Moding-out by the group of diffeomorphisms which are the
identity on the boundary, is the set of metrics having the same boundary
distance function compact in some appropriate topology? A result of this
kind combined with the local results [C-D-S], [S-U2] would probably lead to
a proof that, under appropriate restrictions on the curvature, there is only a
finite number of metrics (up to isometry) with the same boundary distance
function.

The two dimensional case In this case we can use isothermal coordinates [A]
to reduce the problem to the isotropic case. The problem is that the change
of variables produced in this fashion is not the identity at the boundary and
we cannot use Mukhometov’s result. It is easy to see that it is enough to
prove that the change of variables resulting at the boundary is the boundary
value of a conformal map.

Caustics Most of the results mentioned in this paper on the conjecture as-
sume that the domain (or manifold) is geodesically convex. It is very easy to
find counterexamples if the function d, is multivalued [G-M1]. However, the
scattering relation is well defined by just assuming that there are no trapped
geodesics. Is it possible to generalize the known results about recovering the
metric from the boundary distance function to recover the metric (up to
isometry) from the scattering relation?

The Dirichlet to Newmann Map It was proven in [Sy-U2] that from the hy-
perbolic Dirichlet to Neumann map we can recover the boundary distance
function, assuming again that {2 is geodesically convex. Is there any connec-
tion between the elliptic Dirichlet to Neumann and the boundary distance
function d,? As mentioned above to know the elliptic DN map is the same
as knowing the set of Cauchy data (1.6). This set is vaguely resemblant of
the scattering relation (2.16).
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